THE INFLUENCE OF THE SURFACE LAYER OF PROTECTIVE CLOTHING ON ENSURING THE HOMEOSTASIS OF METALLURGISTS

Authors

DOI:

https://doi.org/10.32782/3041-2080/2024-1-17

Keywords:

thermal balance, homeostasis, metallurgy, thermoregulation, protective clothing, effect of color, working conditions, physiological processes, thermal load, ergonomics, occupational safety, high temperature conditions, metabolic heat, convection, radiation, evaporation

Abstract

The analysis of modern information sources made it possible to establish that the work in the metallurgical industry is characterized by intense physical exertion, insufficient protection from thermal factors of production, which acting together can lead to overheating and thermal injuries. The main reasons for the violation of the thermal balance in the bodies of metallurgists can be: an excessive level of direct thermal radiation from the equipment, high ambient temperature; prolonged stay in the zone of influence of thermal factors of production; increased internal heat generation in the worker’s body due to heavy physical exertion; insufficient ventilation and air movement; lack or incorrect choice of work clothes. The considered general approach to the assessment of the thermal balance of the human body indicated the indisputable relevance of the issue of ensuring the maximum removal of external heat from the surface of protective clothing. The purpose of the work was to substantiate the properties of the surface layer of protective clothing to minimize the negative impact on metallurgists of production external heat flows. The research method is a theoretical analysis based on classical provisions of thermodynamics of heat and mass transfer processes on the surface of protective clothing of metallurgists. Task: substantiation of rational parameters of reflective surfaces of heat-protective clothing of metallurgists; disclosure of the conditions for effective removal of heat from the surface of protective clothing of metallurgists. It has been established that in order to ensure safe and comfortable working conditions for metallurgists, it is necessary to ensure: effective levels of radiation load reflection, maximum own radiation and convection removal of heat from the surface. Theoretically, the main dependences that reveal the mechanism of counteracting the heat load on metallurgists have been chosen. For the first time, the expediency of using fabrics with an uneven surface texture for the production of protective clothing for people working in a heated microclimate has been theoretically substantiated.

References

S.F. Neves, Campos J.B.L.M. The impact of water on firefighter protective clothing thermal performance and steam burn occurrence in firefighters. Fire Safety Journal. 2022. DOI: https://doi.org/10.1016/j.firesaf.2021.103506.

Zhang H., Song G., Ren H., Cao J. The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure. Textile Research Journal. 2018. № 88 (8). Р. 847–862. DOI: 10.1177/0040517517690620.

Treatment of Firefighter’s Suit against Fire to Increase Its Effectiveness / Eman Saad. DOI: https://doi.org/10.12816/0045763.

Kostenko V., Kostenko T., Zemlianskiy O., Maiboroda A., Kutsenko S. Automatization of individual antithermal protection of rescuers in the initial period of fire suppression. Eastern-European Journal of Enterprise Technologies. 2017. No. 5/10 (89). Р. 4–11.

Гаврилко О.А., Вашкевіч Р.В. Наукові основи створення методів і засобів індивідуального протигазотеплового захисту рятувальників: монографія. Львів: «Львівська політехніка», 2023. 387 с.

Ozgur Atalay, Senem Kursun Bahadir, Fatma Kalaoglu. An Analysis on the Moisture and Thermal Protective Performance of Firefighter Clothing Based on Different Layer Combinations and Effect of Washing on Heat Protection and Vapour Transfer Performance. Advances in Materials Science and Engineering. 2015. DOI: https://doi.org/10.1155/2015/540394.

Aude Morel, Gauthier Bedek, Fabien Salaün & Daniel Dupont. A review of heat transfer phenomena and the impact of moisture on firefighters’ clothing and protection. Ergonomics. 2014. № 57:7. Р. 1078–1089. DOI: 10.1080/00140139.2014.907447.

Yun Su, Jun Li & Guowen Song. The effect of moisture content within multilayer protective clothing on protection from radiation and steam. International Journal of Occupational Safety and Ergonomics. 2017. № 24:2. Р. 190–199. DOI: https://doi.org/10.1080/10803548.2017.1321890.

Черичка А. Вогнестійкі тканини з мета-і пара-арамідних волокон. З чого шити сучасний костюм пожежника. 2019. URL: teksika.ua/company/news/vognestiyki_tkanyny_z_metai_paraaramidnykh_volokon_z_chogo_shyty_suchasnyy_kostyum_pozhezhnyka.

Abu Shaid, Lijing Wang, Rajiv Padhye, Martin Gregory. Low cost bench scale apparatus for measuring the thermal resistance of multilayered textile fabric against radiative and contact heat transfer. Hardware X. 2019. Vol. 5. DOI: https://doi.org/10.1016/j.ohx.2019.e00060.

“Safety of life activities. Workshop.” (n.d.) Retrieved April 16, 2024. URL: from files.khadi.kharkov.ua.

Henning A. The Heat reducing Effects of Reflective Clothing in Firefighting: A study on the efficiency of reflective textiles in personal protective equipment (Dissertation). 2022. URL: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-92455.

Костенко Т. Розвиток наукових основ підвищення безпеки рятувальників під час ведення оперативних дій в умовах нагрівного мікроклімату: автореф. дис. … докт. техн. наук; ДВНЗ ДонНТУ. Покровськ, 2018. 40 с.

Materials of the XIII-th International Scientific and Practical. April 16, 2024. URL: www.researchgate.net.

Тепловіддача за вільним рухом повітря у великому об’ємі / Д. Сінат-Радченко, Н. Іващенко, С. Василенко. Цукор України. 2016. № 6–7 (126–127). С. 34–35.

Improving the protective properties of special clothing for the State Emergency Service workers for working in high-temperature conditions. Code “Protective clothing”. Lviv 2017. P. 29

Santen normi mccrocklin of virobnichih primer: LTOs 3.3.6.042-99. [Introductio. From 1999-01-12]. K.: Mn. Aharoni health, 1989. 15 р. (Sanitary norms).

Published

2024-09-10