APPLICATION OF THE MATHEMATICAL FRAMEWORK OF COMPUTATIONAL FLUID DYNAMICS FOR THE INVESTIGATION OF GRAVITY CONCENTRATION PROCESSES OF MAGNETITE ORES IN SPIRAL SEPARATOR

Authors

DOI:

https://doi.org/10.32782/3041-2080/2025-5-32

Keywords:

gravity concentration, spiral concentrator, magnetite ores, numerical modelling, computational fluid dynamics, FreeFEM++, FEM, turbulence, particle segregation

Abstract

Using the example of determining the velocity of free and hindered settling of particles, the feasibility of applying computational fluid dynamics methods has been established for modelling the process of sedimentation of mineral particles in a fluid and for determining their settling velocity. The separation efficiency in spiral concentrators is strongly influenced by the interplay between particle size and density. An increase in particle diameter reduces the impact of flow turbulence, stabilizing particle trajectories and enabling a clearer fraction separation. Numerical modelling using the finite element method (FEM) in FreeFEM++ was employed to determine the hydrodynamic and kinematic characteristics of the flow, which can be used to optimize both the design parameters and operational regimes of spiral concentrators to enhance the selectivity of gravity separation of magnetite ores. The development of a three-dimensional flow model has enabled detailed analysis of turbulence zones, local enrichment areas, and concentration distribution across the channel width. These studies can be further extended using OpenFOAM or COMSOL software, both of which are compatible with FreeFEM++ through mesh file exchange. The simulation results were validated by physical experiments conducted on the SVSh-2-1000 spiral separator, which features a parabolic cross-section geometry, and on a laboratory-scale separator with a cross-section profile in the form of a gently inclined curve. The laboratory concentrator produced a concentrate with higher yield, magnetite content, and recovery (up to 85.4 %). Magnetite losses in tailings were 12.5 % for the laboratory unit SVSh-2-1000 and did not exceed 3 %. The obtained results demonstrate a strong correlation between numerical predictions and experimental data, confirming the high potential of computational fluid dynamics in investigating and optimizing gravity separation processes in spiral concentrators.

References

Олійник Т. А., Румницький Д. О., Скляр Л. В. Сегрегація частинок при гравітаційній сепарації мінеральних агрегатів у водному середовищі. Вісник Криворізького національного університету. 2023. Вип. 56. С. 47–54. DOI: https://doi.org/10.31721/2306-5451-2023-1-56-47-54

Matthews B. W., Fletcher C. A. J., Partridge A. C. Computational simulation of fluid and dilute particulate flows on spiral concentrators. Applied Mathematical Modelling. 1998. Vol. 22, No. 12. P. 965–979. DOI: https://doi.org/10.1016/S0307-904X(98)10013-0

Meng L., Gao S., Wei D., Zhao Q., Cui B., Shen Y., Song Z. Particulate flow modelling in a spiral separator by using the Eulerian multi-fluid VOF approach. International Journal of Mining Science and Technology. 2023. Vol. 33, No. 2. P. 251–263. DOI: https://doi.org/10.1016/j.ijmst.2022.09.016

Kwon J., Kim H., Lee S., Cho H. Simulation of particle-laden flow in a Humphrey spiral concentrator using dust-liquid smoothed particle hydrodynamics. Advanced Powder Technology. 2017. Vol. 28, No. 10. P. 2694–2705. DOI: https://doi.org/10.1016/j.apt.2017.07.021

Ye G., Ma L., Alberini F., Xu Q., Huang G., Yu Y. Numerical studies of the effects of design parameters on flow fields in spiral concentrators. International Journal of Coal Preparation and Utilization. 2022. Vol. 42, No. 1. P. 67–81. DOI: https://doi.org/10.1080/19392699.2018.1561312

Олійник Т. А., Румницький Д. О., Скляр Л. В. Визначення впливу в’язкості пульпи на процес збагачення магнетитових суспензій у гвинтових сепараторах. Технологічний аудит та резерви виробництва. Хімічні та технологічні системи. 2025. Т. 1, № 3 (81). С. 6–18. DOI: https://doi.org/10.15587/2706-5448.2025.323268

Li Q., Song B., Luo Z., Peng H. Numerical simulation of particle motion and separation process in spiral concentrators with different geometries. Minerals. 2021. Vol. 11. No. 5. P. 491. DOI: https://doi.org/10.3390/min11050491

Published

2025-11-10