MICROSTRUCTURE OF WELDED JOINT AND HEAT-AFFECTED ZONE OF REINFORCING PROFILES MADE OF RIMMED STEELS AFTER LASER WELDING

Authors

DOI:

https://doi.org/10.32782/3041-2080/2025-5-18

Keywords:

laser welding, welded joint, heat-affected zone, microstructure, dendritic crystallization, non-metallic inclusions, process stability

Abstract

The paper presents the results of studying the microstructure of the weld metal and the heat-affected zone (HAZ) of reinforcing profiles made of rimmed steels after laser welding. Laser welding is considered a promising alternative to conventional methods due to its high energy concentration, short process duration, and ability to ensure high- quality joints at elevated welding speeds. However, determining optimal process parameters requires experimental studies, which can be accelerated by applying macro- and microstructural analysis. Chemical composition analysis of the base metal and metallographic investigations were conducted. It was established that in specimens with a thickness of 1.2 mm, the fusion zone exhibits a distinct dendritic structure with a width of 2–3 mm, widening towards the outer surface of the profile. The HAZ retains a fine-grained structure without significant grain growth, owing to rapid heat dissipation. In 2 mm profiles, oxide non-metallic inclusions were detected, which reduce process stability and intensify spattering. In the absence of shielding gas, oxidation of the molten pool was found to cause crater formation and surface defects. The study demonstrates that low Si and Mn content in rimmed steels leads to an increased number of non-metallic inclusions and oxide-related imperfections. To ensure process stability and improve weld quality, it is recommended to use steels with Si ≥ 0.1 % and Mn ≥ 0.3 % at minimum sulfur and phosphorus levels. The obtained results are of practical importance for the production of profile tubes and reinforcing elements where weld integrity is critical.

References

Shelyagin V. D., Krivtsun I. V., Borisov Yu. S. та ін. Laser-arc and laser-plasma welding and coating technologies. Paton Welding Journal of Avtomaticheskaia Svarka. 2005. № 8. P. 44–49.

Khoddam S., Tian L., Sapanathan T. та ін. Latest developments in modeling and characterization of joining metal-based hybrid materials. Advanced Engineering Materials. 2018. Vol. 20. № 9. P. 1800048. https://doi.org/10.1002/adem.201800048

Бернацький А. В., Шелягін В. Д., Сидорець В. М., Берднікова О. М., Сіора О. В., Набок Т. М. Визначення технологічних особливостей лазерного зварювання стикових з’єднань з різнорідних нержавіючих аустенітних сталей у вертикальному просторовому положенні. Вісник Черкаського Державного технологічного університету. Технічні науки. 2019. № 4. С. 112–126. DOI: 10.24025/2306-4412.4.2019.184462

You P., Mi H., Feng L., Liao S., Liu Q., He B., Li J., Guo W. A comparative investigation on the microstructure and mechanical properties of laser and arc fillet welding of dissimilar steels with flux-cored wire. Journal of Materials Research and Technology. 2025. Vol. 38. P. 2325–2340. https://doi.org/10.1016/j.jmrt.2025.08.075

Cao J., Wang Y., Xu G., Liu X., Zeng X., Wei K. Effect of post-weld induction heat treatment on single- pass high-power laser-arc hybrid welded thick stainless-steel clad plate: microstructure, mechanical properties and corrosion resistance. Journal of Materials Research and Technology. 2025. Vol. 38. P. 2623–2635. https://doi.org/10.1016/j.jmrt.2025.08.068

Weiss T., Hoffmann P., Harst F., Zaeh M. F. Towards high-speed laser beam welding of stainless- steel foils using an adjustable ring mode laser beam source. Optics & Laser Technology. 2025. Vol. 192. Part B. P. 113496. https://doi.org/10.1016/j.optlastec.2025.113496

Cheng B., Zhang H., Huang X., Hu K., Zhang M., Niu F. Microstructure evolution and property improvement of nickel-based alloy/duplex stainless steel welded joints with oscillating laser offset. Journal of Materials Research and Technology. 2025. Vol. 38. P. 3746–3757. https://doi.org/10.1016/j.jmrt.2025.08.030

Jing C., Annan W., Xiangchen M., Dongjie L., Guangfeng Y. Effect of welding speed on the microstructure and corrosion resistance of laser deep penetration welded joints of nuclear-grade 316H stainless steel. Nuclear Materials and Energy. 2025. Vol. 44. P. 101974. https://doi.org/10.1016/j.nme.2025.101974

Mi H., Ma J., Liao S., You P., Feng L., Liu Q., Guo W., He B. Optimization process parameters in laser welding of CLF-1/316LN-IG dissimilar steels for improved welded joint formation and mechanical performance. Journal of Materials Research and Technology. 2025. Vol. 38. P. 3131–3144. https://doi.org/10.1016/j.jmrt.2025.08.169

Geng R., Ma N., Nishimoto D., Zhang R., Lu F., Li Z. Microstructure, element distribution and interfacial properties of laser welded iron–nickel–steel dissimilar joints. Journal of Materials Research and Technology. 2025. Vol. 37. P. 2463–2473. https://doi.org/10.1016/j.jmrt.2025.06.152

Published

2025-11-10