OPTIMIZATION OF TECHNOLOGICAL PRESSING REGIMES FOR ORGANOPLASTICS USING EXPERIMENTAL DESIGN
DOI:
https://doi.org/10.32782/3041-2080/2025-4-22Keywords:
organoplastic, phenilon C-1, mathematical planning, pressing, impact strength, forming parameters, regression modelAbstract
The article presents the results of a comprehensive experimental study on the forming process of organoplastics based on the heat-resistant aromatic polyamide Phenilon C-1, reinforced with organic fibers. The aim of the work is to determine the optimal pressing conditions that ensure enhanced impact strength of the composite material. The study employs the method of mathematical experimental design using a full factorial plan. The influence of forming temperature, fiber content, and fiber length on the mechanical properties of the composite is investigated. A first-order regression equation describing the relationship between impact strength and the selected parameters is developed and verified for statistical significance and adequacy. The generated response surfaces allow the determination of optimal processing conditions: forming temperature of 593–595 K, fiber content of 5–10 wt.%, and fiber length of 2.5–4 mm. The findings confirmed that the best results are achieved at 5 % fiber content, which ensures a balanced microstructure and improved performance characteristics. The experiments demonstrate the importance of accurately controlling each processing parameter, as even minor deviations can lead to significant deterioration in material properties. The application of statistical analysis combined with mechanical testing enabled the evaluation of individual factor effects and their interactions. The proposed methodology not only improves the quality of composite materials but also optimizes manufacturing resources, as mathematical modeling reduces the number of required trials and material waste. Additionally, morphological analysis of the formed samples using scanning electron microscopy showed a uniform distribution of the reinforcing phase and a minimal number of defects under recommended conditions. The results support the use of organic fibers as an effective alternative to traditional glass and carbon fillers due to their better compatibility with polyamides and ability to form stable interfacial zones. This opens new prospects for the development of polymer composites with tailored characteristics for demanding applications in aviation, transport, mechanical engineering, and other high-performance industries.
References
Бутенко В. С. Статистичні методи планування експерименту в технічних дослідженнях. Київ : Вища школа, 1985. 263 с.
Васильєв Г. М. Полімери і композити: властивості, структура, технологія. Харків : ХНУРЕ, 2012. 348 с.
Драчевський С. Є. Основи наукових досліджень : навчальний посібник. Львів : Львівська політехніка, 2020. 212 с.
Кармазін В. І., Литвиненко С. Г. Теорія експерименту : навчальний посібник. Київ : НАУ, 2009. 164 с.
Колісник М. В. Основи математичного моделювання технологічних процесів. Вінниця : ВНТУ, 2015. 188 с.
Montgomery D. C. Design and Analysis of Experiments. 10th ed. New York : John Wiley & Sons, 2019. 752 p.
Myers R. H., Montgomery D. C., Anderson-Cook C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 4th ed. New York : Wiley, 2016. 856 p.
Sapura D., Rusu M. High Performance Polymer Composites. Materiale Plastice. 2019. Vol. 56, No. 2. P. 123–129.
Тузенко О. О., Кухар В. В., Балалаєва О. Ю., Дубиніна А. В. Дослідження математичних моделей у плануванні експерименту методом порівняльного аналізу. Вісник НТУ «ХПІ». Серія «Інформатика та моделювання». 2013. № 39(1012). С. 182–188.
Яворський В. І. Основи синтезу та дослідження полімерних матеріалів : навчальний посібник. Львів : Львівська політехніка, 2016. 240 с.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.