IMPROVEMENT OF STRIP PRODUCTION TECHNOLOGY IN CONTINUOUS CASTING AND ROLLING MODULES

Authors

DOI:

https://doi.org/10.32782/3041-2080/2025-5-23

Keywords:

hot rolling schedules, austenite grain size, reduction, strain rate, TMCP, casting-rolling module

Abstract

The article presents materials where CRM and HSM technologies are compared. The strip production technology in CRM is more progressive but both complexes have some limitations. CRM has less metal consumption at the expense of lower metal waste when combining casting and rolling continuous processes. Gas consumption is also lower and depends on slabs thicknesses and their initial temperature. The other consumptions relationship between CRMs and HSMs can be changed depending on the specific product mix production. But CRMs have some limits in low stain rate during the roughing rolling process. On the other hand, the flexibility of HSMs complexes is more because they are not directly connected with continuous casting machine and Meltshop. Similar steel grades can be produced at any of these two complexes, but thicknesses in each steel group differ. For rolling product production by TMCP it is very important, for achieving the final mechanical properties, to adhere to all temperature and reduction principes. The austenite grain diameter managing and metal structure at both complexes have differences. The reduction and strain rate have joint significant influence on the austenite grain size. The article has identified, for obtaining austenite finer grain, the strain rate must be 1.0 c−1 or more, deformation is to be 20 % or more. The optimized rolling schedule for strip dimensions 12 × 2074 mm, steel grade X70 at the CRM has been offered in the article. The optimized rolling schedule has satisfied all TMCP conditions such as temperature, reduction and strain rate to ensure a mechanical properties complex.

References

Process control system of ultra thin strip production line at Tangshan Iron and Steel Group Co. in China. IFAC Proceedings Volumes / Okamoto K., Wakamiya Y., Shimoda N., Itoh T., Wan H., Liu W. 2003. Vol. 36(24). P. 263–268. DOI: https://doi.org/10.1016/S1474-6670(17)37640-1

Quantitative study on yield point phenomenon of low carbon steels processed by compact endless casting and rolling. Materials Science and Engineering: A / Gi K. J., Um H. Y., Kang J. Y., Jeong H. J., Choi K. H., Lee S. H., Kim S. Y., Chung J. S., Kim H. S. 2018. Vol. 734. P. 408–415. DOI: https://doi.org/10.1016/j.msea.2018.08.006

Achieving high strength and large elongation in a strip casting microalloyed steel by ageing treatment. Materials Science and Engineering: A / Xu S., Wang S., Li S., Cao R., Wu H., Wu G., Gao J., Feng Q., Li H., Mao X. 2022. Vol. 860. Article 144217. DOI: https://doi.org/10.1016/j.msea.2022.144217

Rolling schedule design for the ESP rolling process based on NSGA-II-DE. ISA Transactions / Peng W., Wei C., Yang J., Chen X., Qi B., Li X., Sun J., Zhang D. 2025. Vol. 158. P. 427–441. DOI: https://doi.org/10.1016/j.isatra.2024.12.047

Coiler control in endless hot strip rolling. IFAC Proceedings Volumes / Motomura T., Ueda K., Imazeki T., Fukui Y., Yahiro K. 2005. Vol. 38(1). P. 57–62. DOI: https://doi.org/10.3182/20050703-6-CZ-1902.01688

Optimizing steel coil production schedules under continuous casting and hot rolling. European Journal of Operational Research / Torres N., Greivel G., Betz J., Moreno E., Newman A., Thomas B. 2024. Vol. 314(2). P. 496–508. DOI: https://doi.org/10.1016/j.ejor.2023.10.005

ARVEDI ESP real endless strip production. Brochure No.: T10-0-N022-L4-P-V3-EN. Primetals Technologies Austria GmbH. 2023. URL: ARVEDI_ESP_–_REAL_ENDLESS_STRIP_PRODUCTION_01.pdf

CSP Nexus plant supplied by SMS to JSW STEEL (Dolvi Works). SMS group GmbH. Düsseldorf. 2024. URL: CSP® Nexus plant supplied by SMS group to JSW STEEL (Dolvi Works) – SMS group GmbH

DUE® A revolutionary concept for thin slab casting and rolling. Danieli & C. S.p.A. 2025. URL: https://www.danieli.com/en/products/processes-technologies/product-lines/due_26_192.htm.

Wang S., Shi Y., Liu S. Integrated scheduling for steelmaking continuous casting – hot rolling processes considering hot chain logistics. Mathematical Problems in Engineering. 2020. Article ID 6902934. 10 p. DOI: https://doi.org/10.1155/2020/6902934

Steinboeck A., Mühlberger G., Kugi A. Control of strip tension in a rolling mill based on loopers and impedance control. IFAC Proceedings Volumes. 2014. Vol. 47(3). P. 10646–10651. DOI: https://doi.org/10.3182/20140824-6-ZA-1003.00993

Kwon W., Kim S., Won S. Active disturbance rejection control for strip steering control in hot strip finishing mill. IFAC-PapersOnLine. 2015. Vol. 48(17). P. 42–47. DOI: https://doi.org/10.1016/j.ifacol.2015.10.075

High productivity improvement in JFE Fukuyama no.1 hot strip mill. IFAC Proceedings Volumes / Yokota S., Sekine H., Tsuchiya Y., Mugita H., Aimoto K. 2005. Vol. 38(1). P. 187–192. DOI: https://doi.org/10.3182/20050703-6-CZ-1902.01710

Li P., Li F. The optimal design of hot steel strip temperature control algorithm. IFAC Proceedings Volumes. 2003. Vol. 36(24). P. 129–132. DOI: https://doi.org/10.1016/S1474-6670(17)37615-2

Developing of X65 steel coils making at Steckel mill using thermo-mechanical control process. E3S Web of Conferences / Kurpe O., Kukhar V., Klimov E., Chernenko S., Prysiazhnyi A. 2021. Vol. 280. Article 07017. P. 1–6. DOI: https://doi.org/10.1051/e3sconf/202128007017

Kurpe O. H., Kukhar V. V., Klimov E. S. Finite-element simulation of Steckel mill rolling. Key Engineering Materials. Switzerland. 2021. Vol. 887. P. 564–574. DOI: https://doi.org/10.4028/www.scientific.net/KEM.887.564

Курпе О. Г., Кухар В. В. Дослідження процесів рекристалізації в умовах термомеханічного процесу прокатки сталі марки Х65. Вісник КрНУ імені Михайла Остроградського. Матеріалознавство. 2020. Вип. 2(121). С. 122–128. DOI: 10.30929/1995-0519.2020.2.122-128

Капланов В. І., Курпе О. Г. Вдосконалена залежність для визначення пластичних властивостей сталі категорії міцності Х70. Университетська наука – 2009 : тези доп. міжнар. наук.-техн. конф. ПДТУ. Маріуполь, 2009. С. 156–157.

Published

2025-11-10