COMPREHENSIVE ASSESSMENT OF HEAT TREATMENT EFFECT ON MICROSTRUCTURE AND SERVICE PROPERTIES OF RAIL STEELS
DOI:
https://doi.org/10.32782/3041-2080/2025-5-14Keywords:
rail steel, heat treatment, microstructure, fatigue strength, subgrain structure, austenite grain size heterogeneityAbstract
This study investigates the effect of heat treatment regimes on the formation of microstructure and service properties of eutectoid and hypereutectoid rail steels. Particular attention is paid to the relationship between fine- structural parameters (interlamellar spacing, grain size) and subgrain features (mosaic block size, dislocation density) with the fatigue limit, which is a key factor in ensuring rail durability and reliability under real operating conditions. Using X-ray diffraction and metallographic techniques, it was established that single hardening from induction heating produces a mixed-grain structure with increased dislocation density but insufficient austenite homogeneity. In contrast, double heat treatment combining spheroidizing annealing for fine-grained pearlite with subsequent induction hardening significantly refines the grain size, reduces grain inhomogeneity, and forms a highly dispersed and uniform structure. This structural refinement leads to a considerable increase in the fatigue strength compared to single heat treatment. It was revealed that the most critical factor in improving fatigue resistance is the reduction in mosaic block size and an increase in dislocation density, whereas the role of average austenite grain size is less decisive. The strongest improvement was observed in hypereutectoid steels with higher carbon content, where an increased carbide fraction and reduced intercarbide spacing provide additional resistance against fatigue crack propagation. The results obtained have direct practical relevance for the development of next-generation rail steels with improved durability, strength, and reliability, which are crucial for modern rail transport systems operating under intensive loading and variable climatic conditions.
References
Якість термічно зміцнених рейок та підкладок. Дослідження. Теорія. Устаткування. Технологія. Експлуатація : монографія / Скобло Т. С., Сапожков В. Є. та ін. Харків : ТОВ «Щедра садиба плюс», 2014. 577 с.
Розробка сталей для металопродукції залізничного призначення : монографія / Бабаченко О. І., Кононенко Г. А. та ін. Дніпро : «Домінанта-принт», 2020. 296 с.
Understanding the intrinsic framework of the Hall-Petch relationship of metals from the view of the electronic-structure level / X. Li, et al. Acta Materialia. 2025. Vol. 292. 121071. https://doi.org/10.1016/j.actamat.2025.121071
Effects of recrystallization annealing on microstructure and mechanical properties of low-carbon air-hardening steel LH800 / X. Luo, et al. Mater. Res. Express. 2021. № 8. 106516. https://doi.org/10.1088/2053-1591/ac118b
Effective Technological Process of Crystallization of Turning Rollers’ Massive Castings: Development and Analysis International / Skoblo T., Klochko O., et al. Journal of Mineral Processing and Extractive Metallurgy. 2017. № 2(3). С. 34–39. https://doi.org/10.11648/ j.ijmpem.20170203.12
Теоретические и экспериментальные основы прогнозирования структурообразования, свойств высокоуглеродистых легированных сплавов : монографія / Скобло Т. С., Клочко О. Ю. и др.. Харків : Діса плюс, 2019. 278 с.
Grain size base low cycle fatigue life prediction model for 304 austenitic stainless steel / Duan H., Di R., et al. Materials Today Communications. 2025. Vol. 42. 111537. https://doi.org/10.1016/j.mtcomm.2025.111537
Fatigue Crack Initiation and Growth Path Evolution of U76CrRE Heavy Rail Steel / CEN Y., WANG H., et al. Trans Indian Inst Met. 2025. № 78. Р. 68. https://doi.org/10.1007/s12666-024-03533-3
Retarding effect of submicron carbides on short fatigue crack propagation: Mechanistic modeling and Experimental validation / Zhang J., et al. Acta Materialia. 2023. Vol. 250. 118875. https://doi.org/10.1016/j.actamat.2023.118875
Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel / Zhou Q., Qian L., et al. Materials & Design. 2015. Vol. 85. Р. 487–496. https://doi.org/10.1016/j.matdes.2015.06.172
Kamminga J.-D., Seijbel L. J. Diffraction Line Broadening Analysis if Broadening Is Caused by Both Dislocations and Limited Crystallite Size. J. Res. Natl. Inst. Stand. Technol. 2004. № 109. Р. 65–74.
Brent Fultz; James Howe. Transmission Electron Microscopy and Diffractometry of Materials. Springer Science & Business Media. 2013. 706 p.
Grain-size dependence of plastic-brittle transgranular fracture / Michel Scherer, Mythreyi Ramesh, et al. Journal of the Mechanics and Physics of Solids. 2025. Vol. 200. 106116, https://doi.org/10.1016/j.jmps.2025.106116
Дослідження впливу режимів термічної обробки дослідних сталей для залізничних рейок нового покоління на механічні властивості / Бабаченко О. І., та ін. Фундаментальні та прикладні проблеми чорної металургії. 2020. Вип. 34. С. 247–255. https://doi.org/10.52150/2522-9117-2020-34-247-255
Wildeis A., Christ H.-J., Brandt R. Influence of Residual Stresses on the Crack Initiation and Short Crack Propagation in a Martensitic Spring Steel. Metals. 2022. № 12. Р. 1085. https://doi.org/10.3390/met12071085
Influence of compressive stresses on the Propagation of Surface Shear Cracks in Railroad Rails / Datsyshyn О. P., Marchenko H. P., et al. Mater Sci. 2015. № 51. Р. 235–243. https://doi.org/10.1007/s11003-015-9835-7
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




