ASSESSMENT OF THE IMPACT OF THERMAL PRELOADING ON THE MECHANICAL PERFORMANCE OF BEAM ELEMENTS OF TRANSPORT STRUCTURES AT THE MANUFACTURING STAGE
DOI:
https://doi.org/10.32782/3041-2080/2025-5-27Keywords:
transport, rolling stock, manufacturing technologies, life cycle, automation, computer modelling, thermal reverse bendingAbstract
The article presents the results of a mathematical model for calculating the reverse bending of a spine beam from thermal loading during the manufacture of a railway carriage and an assessment of the impact of thermal preloading on the mechanical performance of beam elements of transport structures at the manufacturing stage.Modern transport structures are constantly subjected to various operational loads, among which temperature fluctuations play a significant role. These fluctuations can lead to thermal stresses in materials, especially in beam elements, which are the main load-bearing components. Preliminary thermal loading, i.e. cyclic temperature effects that occur before the main operational load is applied, can significantly change the mechanical characteristics of materials and, as a result, affect the overall performance and durability of the structure.Reverse bending due to thermal loading is a fundamental phenomenon caused by the generation of residual thermomechanical stresses as a result of uneven heating/cooling and subsequent plastic deformation. It must be taken into account in technological processes involving high temperatures during manufacturing.As a result of the mathematical model obtained to determine the preliminary bending of the semi-wagon’s spine beam, the following conclusions can be drawn.1. The reduction in the initial deflection during the beam manufacturing stage due to some loss of prestressing is between 14 and 23 %, depending on the location of the thermal load P.2. The reverse deflection of a beam pre-stressed by bending reduces the amount of deflection due to welding deformations in relation to the deflection of a conventional beam by 23 to 31 %.
References
Vishal M., Satyanarayanan K. S., Prakash M., Srivastava R., Thirumurugan V. Development and testing of a thermal self-straining preloading test setup for reinforced concrete beams and slabs to perform thermomechanical action. International Journal of Structural Integrity. 2024. Vol. 15. No. 6. P. 1079–1099. https://doi.org/10.1108/IJSI-06-2024-0084
Sulim A. O., Fomin O. V., Khozya P. O., Mastepan A. Theoretical and practical determination of parameters of on-board capacitive energy storage of the underground rolling stock. Scientific Bulletin of National Mining University. 2018. Issue 5 (1), P. 79–87. DOI: 10.29202/nvngu/2018-5/8
Tian L., Zhao H., Wang G., Yuan M., Peng Y., Chen J. Elasticity-Based Locally-Exact Homogenization Theory for Three-Phase Composites Considering the Morphological Effect of Carbon Fibers. Composite Structures, 2022. 116428. https://doi.org/10.1016/j.compstruct.2022.116428
Gao D.-y., Gu Z.-q., Wu C. Bending Behavior and Deflection Prediction of High-Strength SFRC Beams under Fatigue Loading. Journal of Materials Research and Technology. 2020. Vol. 9 (3). P. 6143–6159. https://doi.org/10.1016/j.jmrt.2020.04.017
Fomin O., Sulym А., Kulbovsky I., Khozia P., Ishchenko V. Determining rational parameters of the capacitive energy storage system for the underground railway rolling stock. Eastern-European journal of enterprise technologies. 2018. Vol. 2/1 (92). Р. 63–71. DOI: 10.15587/1729-4061.2018.126080
El-Zohairy A., Salim H., Shaaban H., Nawar M. T. Fatigue Characteristics of Steel–Concrete Composite Beams. Infrastructures. 2024. Vol. 9 (2). P. 29. https://doi.org/10.3390/infrastructures9020029
Fomin O., Lovska A., Kulbovskyi I., Holub H., Kozarchuk I., Kharuta V. Determining the dynamic loading on a semi-wagon when fixing it with a viscous coupling to a ferry deck, East European Journal of Advanced Technologies. 2019. Vol. 2 (7). Р. 6–12. URL: http://nbuv.gov.ua/UJRN/Vejpte_2019_2(7)__2
Yoshitake I., Tsuda H., Kim Y. J., Hisabe N. Effect of Thermal Distress on Residual Behavior of CFRP- Strengthened Steel Beams Including Periodic Unbonded Zones. Polymers. 2015. Vol. 7 (11). P. 2332–2343. https://doi.org/10.3390/polym7111517
Чухліб В. Л., Губський P. О., Окунь А. О. Формалізовані підходи до визначення числа технологічних переходів при виробництві гнутих профілів. Вісник Національного технічного університету «ХПІ». Зб. наук пр. Харків : НТУ «ХПІ», 2020. № 2. С. 169–173.
Fomin O. V., Burlutskyi O. V., Cherkashin O. P., Rodionov I. V. Study of mathematical models changes in the structure of steel of engineering structures after thermal loading, Herald of Lviv University of Trade and Economics. Technical Sciences. 2025. Vol. 41, Р. 7–15. DOI: 10.32782/2522-1221-2025-41-01 http://journals-lute.lviv.ua/index.php/visnyk-tech/article/view/1894
Kuang Y., Wang Y., Xiang P., Tao L., Wang K., Fan F., Yang J. Experimental and Theoretical Study on the Fatigue Crack Propagation in Stud Shear Connectors. Materials. 2023. Vol. 16 (2). P. 701. https://doi.org/10.3390/ma16020701
Fomin O. V, Burlutskyi O. V., Krasulin A. S., Tarasenko A. V., Gunko I. V. Mathematical description of the shrinkage function for determining deformations of mechanical engineering structures. Вчені записки Тав- рійського національного університету імені В. І. Вернадського. Серія: Технічні науки. Том 36 (75). № 2. 2025. С. 36–41 DOI: https://doi.org/10.32782/2663-5941/2025.2.1/06
Wang D., Tan B., Xiang S., Wang X. Fatigue Crack Propagation and Life Analysis of Stud Connectors in Steel-Concrete Composite Structures. Sustainability. 2022. Vol. 14 (12). 7253. https://doi.org/10.3390/su14127253
Kala Z. “Sensitivity Analysis of Fatigue Behaviour of Steel Structure under In-Plane Bending”, Nonlinear Analysis: Modelling and Control. 2006. Vol. 11 (1). P. 33–45. DOI: 10.15388/NA.2006.11.1.14763
Fomin O. V., Burlutskyi O. V., Voronko I., Bursuk O., Kozachuk O. Optimization of the chemical composition of steel for engineering structures by the criterion of stabilization of mechanical properties. Scientific Bulletin of the Tavria State Agrotechnological University. 2025. Vol. 15 (1). Р. 10–17. https://doi.org/10.32782/2220-8674-2025-25-1-1
Alam S., Rahman M. A. Fatigue failure analysis of rotating steel beams by classical approach followed by characterization of the fatigue testing machine. J. Vib. Eng. Technol. 2025. Vol. 13. P. 194. https://doi.org/10.1007/s42417-025-01771-3
Monteiro V. M. d., Cardoso D. C. T., de Andrade Silva F. On the mechanical degradation of R/SFRC beams under flexural fatigue loading. Mater Struct. 2024. Vol. 57. P. 87. https://doi.org/10.1617/s11527-024-02371-5
Alsharari F., El-Zohairy A., Salim H., El-Din El-Sisi A. Pre-damage effect on the residual behavior of externally post-tensioned fatigued steel-concrete composite beams. Structures. 2021. Vol. 32. P. 578–587. https://doi.org/10.1016/j.istruc.2021.02.064
Yang J., Wadee M. A., Gardner L. Residual stresses in steel I-section beams strengthened by wire arc additive manufacturing. Journal of Constructional Steel Research. 2025. Vol. 232. 109606. https://doi.org/10.1016/j.jcsr.2025.109606
Бурлуцький О. В. Удосконалення технологій виробництва та ремонту вантажних вагонів шляхом наукового обґрунтування термічної правки їх елементів : автореф. дис.... канд. техн. наук : 05.22.07 – рухомий склад залізниць та тяга поїздів. Східноукр. нац. ун-т ім. Володимира Даля. Сєвєродонецьк, 2018. 20 с.
Фомін О. В., Бурлуцький О. В., Логвіненко О. А. Процедура правки технологічно-деформованих вагонних металоконструкцій шляхом створення внутрішнього напруженого стану термічним впливом. Вісник Східноукраїнського національного університету імені Володимира Даля. 2017. № 3. С. 234–238.
Беленя Е. І. Попередньо напружені несучі металеві конструкції. Наукова думка, 1975. С. 402.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




