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This study is dedicated to examining the transformational potential of artificial intelligence (Al) and, in particular,
large language models (LLMs) in controlling the operational efficiency of metallurgical enterprises. It examines
contemporary approaches, advanced technologies, and key challenges associated with integrating Al into such
critical areas as automated manufacturing process management, quality control, predictive maintenance, supply
chain management, and workforce management. Based on a comprehensive literature analysis, this article
elucidates how LLMs can enhance efficiency, accuracy, and adaptability within the metallurgical industry, and it also
identifies gaps in existing research that warrant further investigation.

The integration of Al and LLMs in the metallurgical industry faces complex challenges such as the specificity
of industry data and terminology, the opacity of “black box” algorithms, insufficient adaptation of models to industrial
conditions, high computational demands, and real-time issues. Additionally, there is a need for qualified personnel,
cultural changes, and the development of service staff.

A comprehensive approach for the successful implementation of Al technologies in the management
of the operational activities of a metallurgical enterprise will include targeted research that takes into account
practical, economic, and social aspects. The key directions are the development of physics-informed Al with
the integration of metallurgical knowledge, the creation of hybrid systems combining LLMs with traditional methods,
and the application of unsupervised learning to overcome data scarcity. The priority is to enhance the interpretability
of models, integrate with Digital Twins for real-time monitoring, embed safety constraints through predictive control
models, and fine-tune universal LLMs for metallurgical applications.

Keywords: Artificial Intelligence, Large Language Models, Metallurgical Industry, Operational Activity, Digital
Twins, Predictive Maintenance, Quality Control, Management.

Aemiok Cepeili, KolijpmaH Onekcil. Lmy4dHuli iHmesnekm 058 ynpas/iiHHSA egheKmusHicmio
onepayitiHoi disabHOCMi MemasiypeiliHo20 nidnpuemMcmasa: 0271510 cy4acHux nioxodis, MmexHosoz2il
ma BUKJ/IUKIB

ZlocrioeHHs pucBsYeHO BUBHEHHIO mpaHCcopMayitiHo2o momeHyiaay wmy4Ho20 iHmenekmy (L) ma, 30kpe-
Ma, BE/TUKUX MOBHUX Modeneli (BMM) 8 yrnpagniHHi echekmusHicmio onepayiliHoi disisibHocmi MemasypeailiHux rio-
npuemcma. Po32/1510altombCsi CydacHi rnioxodu, nepedosi mexHos102ii ma 0CHOBHI BUK/IUKU, MOB’si3aHi 3 iHmezpayi-
eto LUl B maki KpUmuyHO BaX/1uBi cghepu, siKk aBmoMamu3sosaHe yrpasaiHHa BUPOBHUYUMU ripoyecamu, KOHMpPO/ib
SIKOCMI, IPO2HO3HE 06C/1y208YBaHHS, YNPas/IiHHS aHyr2amu nocmadyaHHs ma kaoposuli MeHeOXMeHm. Ha ocHosi
BCEBIYHO20 aHani3y nimepamypu sucsim/aeHo, ik BMM mMoxymb niosuwumu echekmusHiCmb, MOYHICmb | adari-
musHicmb MemastypaitiHol MPOMUC/I0BOCMI, & MakKoxX i0eHMUhiKoBaHO Mpo2asiuHU B HasiBHUX OOC/IIOXEHHSIX,
wo nompebyroms nooasibWo20 BUBHEHHS.

IHmeepayis Wl ma BMM-modeneli y memasypeilHili mpoMuc/1080Cmi cmukaemscsi 3 makumMu KOMI/IEKCHUMU
BUK/IUKaMU, SIK crieyucpiyHicmpb 2asy3esux 0aHux i mepMiHoO/02il, HenpPo3opicme a120pUmmMIB «4OPHO20 AUWUKa»,
HedocmamHs adanmavyjisi Mmooesieli 0o MPOMUC/IOBUX YMOB, BUCOKI 06HUC/I0Ba/IbHI BUMO2U ma rpob/ieMu peasibHo-
20 yacy. JJodamkoso BUHUKarOmMb nompeba 8 KkBasichikosaHUX kadpax, Ky/lbmypHi 3MiHU ma po38UMOK 06C/1y208Y-
H04020 nepcoHa’ny.

KomninekcHull nioxio 07151 ycniwHo20 BrposackeHHs1 LLUI-mexHonoaili 8 ynpasniHHi onepayitiHow OisisibHicmio
MemayiypailiHo2o niornpuemMcmaa byoe sK/roYamu YinecnpsiMosaHi 00CIOXEHHS, W0 BPaxosytoms npakmu4Hi, eko-
HOMIYHI ma coyjasibHi acnekmu. K/lo4o8uUMU HanpsiMamu € po3sumok (idudHo-iHghopmosaHo2o LUI 3 iHmezpayieto
mMemastypailiHUX 3HaHb, CMBOPEHHS 2i6pPUOHUX cucmeM noedHaHHs BMM i3 mpaduyiiiHumu memodamu, 3acmocy-
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BaHHS HEKOHMPO/1b0BAHO20 HaBYaHHS 07151 1000/1aHHS dechiyumy daHux. [piopumemHuUM € MidBUWEHHS IHmeprpe-
mosaHocmi modesnel, iHmeapayisi i3 yughposumu 0BiliIHUKaMU 0719 MOHIMOPUH_Y peaslbHO20 Hacy, B6yO0ByBaHHSI
06MeXeHb 6e3rneKu Yepes nPo2HO3HI KOHMPO/IbHI MOde/i ma doHas1awmyBaHHs yHisepcasibHUX BMM 07151 mema-

JypeiliHux 3acmocyBaHb.

Knrouosi cnosa: wmyyHul iHmMesnekm, Besiuki MOBHI MOOesi, MemasiypailiHa Mpomuc/08icmb, onepayiliHa
0isi/IbHICMb, Yughposi 0BIUHUKU, NPO2HO3HE 06C/1y208YBaHHST, KOHMPO/Ib SKOCMI, YPAB/IIHHS.

Introduction. The metallurgical industry is the
cornerstone of the modern economy, providing
the raw material base for key sectors such as
mechanical engineering, construction, aircraft
engineering, and electronics [1]. However, this
sector faces significant challenges, including
high energy consumption, substantial CO,
emissions, low resource use efficiency, frequent
machine breakdowns, and issues related to labor
productivity [1; 2]. These problems threaten the
sustainability and competitiveness of the industry
in the context of rising environmental standards
and global competition [1; 2].

Traditionally, operational activities in
manufacturing encompass the comprehensive
organization of processes from design to the
finished product, including the management of
workforce, quality, maintenance, and supply [3].
Before the spread of automation, these processes
were optimized using human-oriented methods [4].
The development relied on testing and visualizing
prototypes, while cost control relied on human
experience and judgment, and maintenance was
either preventive or reactive. Quality control was
carried out by human experts, and it was time-
consuming.

In traditional metallurgy, this led to low resource
utilization, labor inefficiency, and frequent
equipment failures. Moreover, a number of
manufacturing enterprises are still operating with
outdated systems that lack the necessary flexibility
and interoperability for seamless integration with
modern technologies [5].

However, efforts to automate operational
processes face significant challenges due to the
complexity and dynamism of the metallurgical
processes themselves. Information for decision-
making is fragmented and often requires manual
collection and analysis, creating bottlenecks and
slowing down the response to changes [6]. In
addition, high initial investments in modernization
and integration with outdated systems remain
significant barriers.

In response to these challenges, digital
transformation and the implementation of artificial
intelligence (Al) technologies have become key
strategies for enhancing the efficiency, flexibility,
and resilience of manufacturing processes [1; 2; 3;
7; 8; 9]. In particular, the concepts of Industry 4.0
and 5.0, which involve the integration of the Internet
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of Things (loT), robotics, Big Data, analytics, and
Al, are revolutionizing traditional manufacturing
paradigms [1; 4; 7; 8; 9].

The latest advancements in the field of Large
Language Models (LLMs), such as the GPT
family from OpenAl, represent a significant
breakthrough in the area of Natural Language
Processing (NLP) [4]. These models, enhanced by
expanded computational resources and advanced
algorithms, have demonstrated exceptional skill in
understanding context, answering questions, and
generating content [4]. In the manufacturing sector,
including metallurgy, these opportunities are
gradually revealing their enormous potential [4; 6].

This occurs due to the powerful capabilities
of logical reasoning, knowledge transfer, and
text processing, which allow LLMs to automate
the generation of reports and technical
documentation, facilitate knowledge exchange,
and provide deep analysis of vast amounts of data
[4]. Thanks to this, they contribute to increasing
operational efficiency, improving quality control,
forecasting maintenance needs, and optimizing
production schedules, which leads to innovations
and resource savings in the metallurgical and
other manufacturing industries [4; 6].

LLMs are capable of transforming the
manufacturing sector by offering new opportunities
for process optimization, increasing efficiency, and
stimulating innovation [4]. They can automate
and improve various aspects of production, from
product design and development to quality control,
supply chain optimization, and talent management
[4]. Their ability to understand and execute complex
instructions, extract valuable information from vast
amounts of data, and facilitate knowledge sharing
makes them an extremely valuable tool [4].

Thus, the research and development of
automated systems for controlling operational
efficiency in  metallurgical enterprises using
specialized Al language models is extremely
relevant. This will allow the industry to overcome
existing limitations, increase productivity, and
ensure sustainable development in the context
of constant market changes and technological
progress [2].

The purpose of this analytical study is to analyze
and summarize existing knowledge regarding the
application of Artificial Intelligence and, in particular,
LLMs, for optimizing the operational activities of
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metallurgical enterprises. This review will serve as
a theoretical basis for further scientific research
in the field of developing automated systems for
managing operational efficiency in metallurgical
enterprises.

Materials and Methods. Artificial Intelligence
(Al) has significantly transformed various industries,
bringing revolutionary changes to operational
efficiency and competitive dynamics worldwide
[2]. In particular, LLMs, such as GPT-4V, have
significant potential to transform the manufacturing
industry by offering new opportunities for process
optimization, increasing efficiency, and fostering
innovation [4]. Their capabilities in understanding
and generating natural language, contextual
comprehension, answering questions, as well as
logical reasoning and knowledge transfer make
them a powerful tool for automating and enhancing
various aspects of production [4].

LLMs can revolutionize product design processes
by exploring vast design spaces, generating diverse
and innovative solutions, and optimizing designs
based on given parameters [3]. They can contribute
to the development of products that have increased
efficiency, effectiveness, and safety, especially in the
post-pandemic era [3]. The integration of LLMs into
computer-aided design (CAD) and computer-aided
manufacturing (CAM) significantly accelerates
the preliminary phases of the CAD process,
automates routine tasks, and optimizes the “design-
manufacture” sequence [4]. For example, GPT-4V
can design electric vehicles, providing key points of
enhanced design and visual images [4].

LLMs have the potential to improve quality
control processes by effectively detecting and
identifying defects and anomalies in various
products [3]. They can create virtual models
of products, allowing the simulation of the
manufacturing process, which helps in the early
detection and prevention of potential defects [3].
The application of Al, including LLMs, is proposed
for monitoring industrial processes, diagnosing
faults, and controlling product quality [3]. In
metallurgy, Al quality control systems are already
being used, for example, at ArcelorMittal to improve
product quality and reduce waste [2].

Predictive maintenance (PM) is a proactive
strategy that uses data, analytics, and machine
learning to predict the likelihood of equipment or
machine failure. Al can be applied at various stages
of the PM, from data collection to deployment and
monitoring [3]. This helps prevent future failures
and minimize downtime [3; 4; 7; 9; 10]. In the
metallurgical industry, Al-driven PM is becoming
increasingly widespread, helping to extend the
lifespan of machines and reduce unplanned

owntime [2]. In metallurgical production, systems
based on machine learning models are being
implemented to manage the rolling rates and
extraction of slabs from furnaces, which leads to
increased productivity.

Demand forecasting is vital for optimizing
production  processes, effective inventory
management, and meeting customer needs [3;
4]. Al, including LLMs, can analyze market trends,
consumer behavior, and sales data, enhancing the
accuracy of demand forecasting [3; 4; 10]. LLMs
can also optimize delivery routes and schedules,
significantly reducing transportation costs [4]. For
example, Tata Steel has transformed its logistics
operations using Al-driven predictive software [1].

LLMs, such as ChatGPT, can be integrated
into work settings as an element of an individual
network of applications that goes beyond simple
text generation [3]. They can analyze and
synchronize various elements, such as workforce
planning, shift schedules, job description analysis,
and performance management [3]. LLMs can
also automate the screening and initial interview
processes in HR departments [4].

LLMs have transformational capabilities in
planning the work of robots, especially with the
use of multimodal input data, such as visual and
auditory data [4; 9; 10]. They can generate code
fragments and entire programs for robots with high
accuracy, significantly reducing the time and effort
required for task design [4]. Examples include
the use of LLMs for coordinating the actions of
robots based on instructions and visual perception
[4]. The use of robots for cutting, welding, and
processing materials in metallurgy significantly
reduces manual labor and mechanical errors [2].

One of the implemented projects is an Al
solution at Metinvest based on computer vision for
real-time quality control of semi-finished products.
The system automatically detects defects during
slab production: it tells the operator where and
what kind of defect is found, helping to correctly trim
the material [11]. The next stage after a thorough
analysis of defects during the production of semi-
finished products is the integration with physical
robotic systems for full process automation [11].

LLMs play a significant role in promoting the
bioeconomy by facilitating research, innovation,
and the effective translation of scientific discoveries
into practical applications [4]. They can process vast
amounts of scientific literature and data, providing
researchers and manufacturers with information
that accelerates the design and optimization of
bioengineering processes [4]. LLMs simplify the
patent filing process by automating labor-intensive
text work and generating draft applications [4].
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They also facilitate the extraction and exchange
of knowledge from factory documents and expert
data [4].

Overall, LLMs contribute to the transformation
of manufacturing procedures by optimizing
processes, improving product design, enhancing
quality control, and promoting overall efficiency
and innovation in the industry [3]. LMMs can
analyze Big Data to identify patterns and insights
that enable more informed decision-making,
improved forecasting, and optimized production
schedules [2; 4; 5; 7; 8; 10].

Integration of the LLMs with Digital Twins
(DT) is a key direction for maximum productivity,
especially in the steel industry [6]. DT are virtual
copies of physical systems that allow real-time
monitoring, optimization, and analysis [6]. LLMs
can democratize access to information by providing
real-time answers to various operational and
planning questions using structured and validated
data available in the DT [6]. This significantly
enhances operational efficiency, productivity,
and decision-making capabilities [6]. The use of
simulation software, such as ESI Group ProCast,
for modeling casting processes demonstrates
how virtual experiments can predict temperature
distribution, metal flow vectors, and potential defect
formation, which can also be enhanced by LLMs.

The analyzed sources use various
methodological approaches to study the application
of Al and LLMs in production, including metallurgy.
This allows for a comprehensive understanding
of the topic, which is useful for developing the
methodology of a dissertation study:

1. Many sources are based on qualitative
research and a critical review of existing literature
to identify the impact of digital transformation and
Al on manufacturing processes [3]. This approach
allows for the systematic evaluation, analysis, and
integration of the existing body of knowledge.

2. Some studies use a mixed approach,
combining qualitative and quantitative analysis [2;
5; 9; 12]. For example, a content analysis of the
annual reports of leading industrial corporations
is conducted using QDA Miner software to identify
connections between “smart manufacturing”,
strategy, and performance indicators [12].

3. The research includes the collection of
empirical data, the study of case studies, the results
of experiments, and the theoretical foundations
related to each area of research [5; 9]. Examples
include the analysis of Al implementation at specific
metallurgical enterprises, such as Tata Steel,
ArcelorMittal, Baowu Steel, and others [1; 2].

4. Aggregating data through surveys in
manufacturing companies to assess the impact of
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Al on key performance indicators [5]. Interviews are
also conducted with industry experts, managers,
and engineers to gain working knowledge into the
challenges and benefits of Al implementation [2].

5. A comparative analysis is used between
production processes that have implemented
Al and those that have not, to identify significant
improvements in labor efficiency, machine
reliability, and sustainability [2].

These methodological approaches provide
a comprehensive understanding of both the
theoretical concepts and the practical implications
of integrating Al and LLMs into industrial processes.

Results. Despite significant advantages and
potential, the integration of Al and LLMs in the
metallurgical industry faces a number of challenges
and research gaps that require further attention.

The authors have identified the following
general challenges of Al and LLMs integration:

1. The metallurgical domain encompasses
highly specialized and very complex data
characterized by specific terminology, regulatory
frameworks, and dynamic market conditions [4].
This requires complex comprehension capabilities
from the models. Despite the large amount of
technological data coming from automated control
systems, ensuring their high quality, consistency,
and integration capability remains a critical
challenge [2; 9].

2. Many Al models, especially deep learning
ones, remain “black boxes”, which complicates
understanding their decisions [7; 9]. In industrial
conditions, where safety and accuracy are critical,
the development of transparent and explainable
Al models (Explainable Al — XAl) is necessary to
enhance trust and broader implementation [4; 9].

3. LLMs designed for general tasks may perform
poorly with specific terminologies and complex
interconnections in the metallurgical industry [4;
9]. Further research is needed on the adaptation
of LLMs to specific domains by training models
on specially selected arrays of production data,
technical documents, and industry standards [4].

4. The application of LLMs, especially the latest
models, is associated with high computational
demands, significant energy consumption, and
latency issues during real-time processing [4; 7].
This is a significant limitation for their widespread
implementation in industrial conditions [1; 2; 5].

5. The implementation of Al requires not only
technological updates but also cultural changes
within the organization to embrace new approaches
to automation and data-driven decision-making
[2; 5]. There is a shortage of qualified Al and data
specialists in the manufacturing sector [1; 2; 5].
Research often underestimates the scope and
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complexity of workforce development, which is
necessary [1].

On the other hand, there are specific gaps and
future research directions:

1. Despite the successful results, the
architecture of Al and the physical characteristics
of metallurgical processes were mainly considered
independently of each other [7]. Further research is
needed on the design of Al structures that possess
physically interpretable behavior, which will allow
for a better understanding and optimization of the
characteristics of relevant Al models by integrating
domain knowledge [4; 7].

2. Although LLMs excel at processing
unstructured data and generating human-like text,
they may have difficulties with tasks that require
precise numerical calculations or strict logical
reasoning [4]. Researchers are studying hybrid
approaches that combine LLMs with traditional
rule-based systems or numerical optimization
methods [4; 7; 9].

3. The complexity of the stochastic and
nonlinear nature of manufacturing systems at the
systemic level creates difficulties for decision-
making processes. The application of machine
learning at the system level remains limited [9].
A deeper understanding of manufacturing
processes and the selection of appropriate Al
methods and algorithms is needed.

4. Achieving a comprehensive understanding
of the relationships between the material, its
processing, and characteristics is vital to ensure
the desired performance of manufactured parts [9].
Al has the potential to simplify the modeling process
and increase forecasting accuracy, thereby
enhancing productivity in various manufacturing
processes.

5. LLMs, in essence, are language models,
whereas production applications, such as planning,
require “world models” [7]. Synergistic integration
of LLM and world models can open a potential
path to solving common planning problems.

6. There is a significant gap between the
theoreticalpotentialofdigitalsolutionsandtheiractual
implementation in the metallurgical industry [1].
Research  often focuses on engineering
developments, without considering the larger
operational, cultural, and organizational contexts
necessary for successful implementation [1]. More
comprehensive approaches to integration are
needed.

7. The growing demand for the speed and
accuracy of sensors, data transmission, and Al

implementation processing brings the limitations
of hardware to the forefront [7]. The development
of specialized hardware for the new generation of
Al algorithms can bring enormous benefits to Al in
manufacturing.

Conclusions. These gaps in research highlight
the need for further, more targeted studies that will
not only develop new Al models and algorithms
but also consider the practical, economic, and
social aspects of their implementation in such a
critical industry as metallurgy. This will allow for the
creation of more reliable, interpretable, and efficient
systems for managing operational activities.

Future research may focus on integrating
knowledge of metallurgical production into Al
models (physics-informed Al), which will ensure
domain consistency and increased prediction
accuracy, especially in conditions of limited or
incomplete data.

Priority efforts should be directed towards
several key areas to improve the application of
LLMs.

First, to handle the specialized and complex
nature of production data and meet the high
engineering expectations for accuracy and
reliability, focus should be placed on developing
advanced methods for domain adaptation and
hybrid Al approaches that combine LLMs with

traditional rule-based systems or numerical
optimization methods.
Second, to reduce challenges related to

data scarcity and the need for large-scale data
annotation,emphasiswillbe placedonunsupervised
and semi-supervised learning paradigms, while
simultaneously enhancing the interpretability of
LLMs for critical decisions by ensuring transparent
reasoning processes. Moreover, for decision-
making based on Al in critical operational scenarios,
embedding safety constraints through integration
with Model Predictive Control will be crucial to
prevent catastrophic consequences.

Third, a key direction is the further development
of hybrid solutions that combine generative Al with
DT to enhance real-time monitoring, simulation,
and process optimization, allowing DT to invoke
LLMs to solve complex tasks.

Finally, the field of research should develop
by utilizing and fine-tuning universal LLMs with
knowledge of metallurgical production to promote
broader application in areas such as system
design, planning, and diagnostic thinking, while
simultaneously focusing on enhancing their energy
efficiency.
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